Methods to Measure the Reaction Cross Section

Riccardo Raabe KU Leuven, Instituut voor Kern- en Stralingsfysica

Riccardo Raabe – KU Leuven

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

Contents

- Production of radioactive ion beams and production of radioisotopes
- The cross section
 - Definition
 - Measured quantities
- Nuclear reactions
 - Definitions
 - Probability of different processes
- Production of unstable nuclei
 - Fusion
 - Other processes
- Current production methods
- Yields at facilities
- Summary/conclusions

Production of radioactive ion beams

Isotope Separation On-Line

- (Mostly) light ion beam on heavy-ion target
- Products are stopped in the target
- Depends on chemistry
- **Slow** (diffusion from the target)

ISOL

In-flight separation

- Heavy-ion beam on thin target
- Fast
- Used to study very short-living isotopes, produced with small probabilities

Projectile Fragmentation

KU LEUVEN

Riccardo Raabe – KU Leuven

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

Half life not so crucial \rightarrow two separate moments

Production in thick target

Half life not so crucial \rightarrow two separate moments

Production in thick target

Half life not so crucial \rightarrow two separate moments

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

target nuclei

intensity

Half life not so crucial \rightarrow two separate moments

Cross section

Cross section

- separation between internal degrees of freedom and relative motion
- boundary conditions for relative motion (conservation principles)
- build ad-hoc potential that describes the interaction between the nuclei

Cross section

We can measure...

- Cross section as function of the angle: angular distribution $d\sigma/d\Omega$
- Total cross section for all possible channels
 → <u>attenuation</u> of the beam intensity
- Cross section as function of the energy <u>Excitation function</u> $\sigma(E_{cm})$
- Cross section for all energies smaller than the beam energy: stopping the beam in the target
 → total probability for a given channel

Nuclear reactions

Collision between a beam particle *a* and a target nucleus *X* In the collision they exchange energy, momentum and possibly mass
 As a result, we obtain a product nucleus *Y* and
 some outgoing radiation *b* (particle, γ-ray)

 $a + X \rightarrow b + Y$

• Alternative notation:

X(a,b)Y

Puts the accent on the process (a, b)

Types of reactions (list not exhaustive)

- Combination of produced particles/radiation: reaction **channel**
- Different channels may be present (**open**) at the same time depending on conservation principles
- <u>Elastic</u> scattering: X(a, a)X
 Always present!
- Inelastic scattering: $X(a, a')X^*$
- Rearrangement reactions: (ex)change of mass
 - <u>Transfer</u> reactions:
 - stripping ¹²C(d,p)¹³C
 pick-up ¹²C(p,d)¹¹C
 <u>Knock-out</u> reactions: ¹²C(p,2p)¹¹B
- Photo-disintegration: $X(\gamma, a)Y$
- Capture reactions: $X(a, \gamma)Y$

 $^{12}C(p,p)^{12}C$ $^{208}Pb(n,n)^{208}Pb$

 $^{12}C(p,p')^{12}C^{*}$ $^{40}Ca(\alpha,\alpha')^{40}Ca^{*}$

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

 $^{16}O(\gamma, \alpha)^{12}C$

 $^{14}N(\alpha,\gamma)^{18}F$

Time scales

- <u>Direct</u> reactions: transfer, breakup A(a, c + d)A
 - Fast, only few nucleons involved
 - Likely to occur at small exit angles (peripheral)
 - Modelled as one-step processes
 - Time scale $\tau \ll 10^{-22}$ s
- <u>Resonance</u> reactions
 - Some nucleons form a resonance that lives for a short time $\tau \approx \hbar/\Gamma$
 - The total kinetic energy matches the energy of a resonance in the compound system
- <u>Compound-nucleus</u> reactions
 - $-A + a \rightarrow C^* \rightarrow B + b$
 - Energy is shared among all nucleons
 - Overlap of many resonances, described statistically
 - No memory of entrance channel
 - Products emitted isotropically
 - Time scale $\tau \approx 10^{-22}$ s (time of a nucleon orbital period)

Impact parameter – Angular momentum

- *b* is the impact parameter
- If $b \approx R_A + R_a$ peripheral reactions (direct)
- If $b < R_A + R_a$ compound nucleus / fusion
- Measured as orbital angular momentum: $\ell = \frac{1}{\hbar} mvb \rightarrow b = \ell \lambda$ with $\lambda = \left(\frac{1}{\hbar}\sqrt{2mE_k}\right)^{-1}$ de Broglie wavelength (*m* mass, E_k kinetic energy, in the center-of-mass system)

Impact parameter – Angular momentum

- $\ell > (R_A + R_a)/\lambda = \ell_c$ no reaction (possibly Coulomb elastic)
- $\ell \approx \ell_c$ peripheral, direct reactions
- $\ell < \ell_c$ head-on collision, compound nucleus reaction / fusion
- λ decreases and ℓ_c increases
 with increasing energy:
 more units of ℓ can lead to reaction

First rough estimate of the cross section:

Probability of reaction \approx area of the target

Riccardo Raabe – KU Leuven

- Charged particles:

 Sufficient energy to overcome the Coulomb repulsion
 Potential well (strong force)
 - Heavy ions:
 - direct processes negligible
 - deep inelastic increasing with collision energy

- Light ions (p,n,d,t,³He,α):
 - deep inelastic negligible
 - importance of resonances
 (at collision energies around the barrier)
 - high energy:
 fusion → spallation/fragmentation

(at collision energies around the barrier)

high energy:
 fusion → spallation/fragmentation

l=lc

KU LEUVEN

ANGULAR MOMENTUM

- (at collision energies around the barrier)
- high energy: fusion \rightarrow spallation/fragmentation

(at collision energies around the barrier)

- high energy: fusion \rightarrow spallation/fragmentation

FUSION

ANGULAR MOMENTUM

KU LEUVEN

l=lc

Reaction processes

 Fusion: two-step process reaction + "decay" (fission, evaporation)

- Higher energies:
 - fragmentation (few 100 MeV/nucleon)
 - spallation (≈GeV/nucleon)

Cross sections do not depend upon the kinematics!

However, in inverse kinematics (in-flight separation) the production is more directly related to the cross section

Production of unstable nuclei

G. G. Adamian et al., Eur. Phys. J. A 56:47 (2020)

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

Modelling fusion cross sections

1. Compound nucleus formation

For each angular momentum:

$$\sigma_l = \pi \chi^2 (2l+1) T_l$$

with

$$T_{l} = \left[1 + \exp\left(\frac{l - l_{\max}}{\Delta}\right)\right]^{-1}$$

KU LEUV

- 2. Evaporation probabilities / Fission: statistical equilibrium Calculated as the cross section of the inverse reaction Ingredients:
 - E* of compound nucleus and of residue
 - separation energy (for particles)
 - level density: parametrised

<u>Fission</u> occurs if $l_{max} \ge l_{crit}$ at which the fission barrier becomes smaller than the neutron separation energy

Calculating fusion cross sections

Nuclear Inst, and Methods in Physics Research B 416 (2018) 41-49

Evaluation of fusion-evaporation cross-section calculations

B. Blank^{a,b,*}, G. Canchel^a, F. Seis^{a,1}, P. Delahaye^c

In general: overestimation of experimental cross sections

Riccardo Raabe – KU Leuven

KU LEUVEN

 CASCADE (1977) Analytic

PACE (1980)

Monte-Carlo

HIVAP (1981)
 Analytic

Codes

- CNABLA (1999) Monte-Carlo
- GEMINI++ (2008)
 Monte-Carlo

Cross sections at relativistic energies

ABRABLA07

J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531 (1991) 709

1. Abrasion

- (only) nucleons with overlapping trajectories collide
- Excitation energy from holes in the level scheme

KU LEUVEN

2. (Possibly) breakup of the prefragment

For very high excitation energies N/Z ratio is conserved

3. De-excitation (ablation)

Competition between evaporation (of n,p,d,t, α , γ) and fission

Cross sections at relativistic energies

ABRABLA07 J.-J. Gaimard, K.-H. Schmidt, Nucl. Phys. A 531 (1991) 709

S. Lukić et al., Nuclear Instruments and Methods in Physics Research A 565 (2006) 784

Riccardo Raabe – KU Leuven

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024

Cross sections at relativistic energies

Other Codes

Nuclear Inst, and Methods in Physics Research B 416 (2018) 41-49

 $\label{eq:constraint} \begin{array}{l} Evaluation \ of \ fusion-evaporation \ cross-section \ calculations \\ B. \ Blank^{a,b,*}, \ G. \ Canchel^a, \ F. \ Seis^{a,1}, \ P. \ Delahaye^c \end{array}$

• EPAX (1990)

Phenomenological formula for fragmentation yields Parameters fitted on experimental values

- SPACS (2014)
 Semi-empirical parameterization of spallation yields
- GRAZING (1995)
 Model (and code) for deep-inelastic reactions

Comprehensive simulation codes

• FLUKA http://www.fluka.org

- "Fully integrated particle physics Monte-Carlo simulation package"
- Calculations of particle transport and interactions with matter

 GEANT4 https://geant4.web.cern.ch
 "Simulation of the passage of particles thorugh matter"

section (b)

Microscopic cross

Current production of radioisotopes

- Neutron capture on stable targets
 Production of slightly neutron-rich isotopes
 Mainly at reactor facilities
 Resonances are important!
- Fission
 Thermal neutrons on ²³⁵U

 Fast neutrons on ²³⁸U
- Proton-induced reactions (p,xn), (p,α)
 For positron emitters
 Dedicated cyclotrons
- Light ion-induced reactions (d,xn), (d,α), (α,xn)
 Dedicated cyclotrons

Yields at Radioactive Ion Beam facilities

ISOLDE https://isoyields2.web.cern.ch

Riccardo Raabe – KU Leuven

Yields at Radioactive Ion Beam facilities

GANIL/SPIRAL(2) https://u.ganil-spiral2.eu/chartbeams/

Summary/conclusions

- Cross sections are <u>very</u> difficult to calculate
 → use semi-classical models
 - \rightarrow use phenomenological approaches
- The most useful reaction process is fusion Two-step process Modelling evaporation is challenging! Several codes available
- New radioisotopes: challenging research!
 Information from radioactive ion beam facilities

The cross section is only the first step

...thank you for your attention!

Enjoy Leuven and Belgium!

Riccardo Raabe – KU Leuven

PRISMAP School on radionuclide production – Leuven, 27-31/05/2024