Target materials for ISOL

Stefano Corradetti

Contents

Outline:

- Part 1: Introduction
- Part 2: ISOL target materials
- **Part 3:** Production techniques
- Part 4: Characterization techniques
- Part 5: Simulations
- Part 6: A few examples of recent target developments

INFN (Istituto Nazionale di Fisica Nucleare)

Organization:

- 20 sections
- 6 groups
- 4 national laboratories
- 4 national centers
- EGO consortium for gravitational waves

LNL (Legnaro National Laboratories)

1. Introduction

The Target Service at INFN-LNL

LNL org. chart:

Targets Service

- Production of targets for the experiments at LNL accelerators and for the production of radioisotopes of interest for nuclear physics, medicine and other applications.

The Target Service at INFN-LNL

1. Introduction

Activities of the service (Production)

- Targets for nuclear physics
- Targets for applications

- High-power targets

ISOL targets

Collaboration activities

• Characterization of innovative targets

The SPES facility at INFN-LNL

1. Introduction

SPES is: 1) A second generation ISOL facility (for neutron-rich radioactive ion beams)

2) An interdisciplinary research center (for p,n applications)

The SPES facility at INFN-LNL

1. Introduction

2. Target materials

ISOL target material research in Europe and worldwide

2. Target materials

ISOL target material papers – focus on materials

2. Target materials

J.P. Ramos, Nuclear Inst. and Methods in Physics Research B 463 (2020) 201–210.

ISOL target material research in Europe and worldwide

2. Target materials

A few notable articles/reviews

2. Target materials

- J.P. Ramos, Thick solid targets for the production and online release of radioisotopes: The importance of the material characteristics – A review, Nuclear Instruments and Methods in Physics Research B 463 (2020) 201– 210.
- J. Guillot et al., Development of radioactive beams at ALTO: Part 2. Influence of the UCx target microstructure on the release properties of fission products, Nuclear Instruments and Methods in Physics Research B 440 (2019) 1–10.
- J. Guillot et al., Development of radioactive beams at ALTO: Part 1. Physicochemical comparison of different types of UCx targets using a multivariate statistical approach, Nuclear Instruments and Methods in Physics Research B 433 (2018) 60-68.
- A. Gottberg, Target materials for exotic ISOL beams, Nuclear Instruments and Methods in Physics Research B 376 (2016) 8–15.
- J.P. Ramos et al., Target nanomaterials at CERN-ISOLDE: synthesis and release data, Nuclear Instruments and Methods in Physics Research B 376 (2016) 81–85.
- R. Kirchner, On the release and ionization efficiency of catcher-ion-source systems in isotope separation online, Nuclear Instruments and Methods in Physics Research B 70 (1992) 186-199.

ISOL target materials: production and release

2. Target materials

• Open porosity

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

ISOL target yield

ISOL target yield [s⁻¹]:

 $Y = Y_0(E)I_{prim}\varepsilon_{rel}(\lambda) \varepsilon_{form} \varepsilon_{irr} \varepsilon_{ion}$

$$\varepsilon_{rel}(\lambda) = \int_0^\infty e^{-\lambda t} p(t) dt$$

 $t = t_{diff} + t_{ads} + t_{eff}$

Where:

 $Y_0(E)$: normalized production rate of the isotope $[\mu C^{-1}] \rightarrow$ depends on incident particle, production cross section (function of the beam energy, E) or in some cases secondary production channels

 I_{prim} : primary beam intensity [µA]

 ϵ_{form} : molecular sideband formation efficiency

 ϵ_{irr} : chemical losses and irreversible adsorption on surfaces

 ϵ_{ion} : ionization efficiency

 ϵ_{rel} : release efficiency \rightarrow depends on losses due to the release time (t), isotope decay (λ) and probability density function (p(t)).

p(t): probability density function (release curve) \rightarrow depends on chemical element, target matrix, microstructure and geometry of the target-ion source assembly

t_{diff}: diffusion time

t_{ads}: delay due to surface sticking

t_{eff}: effusion time

J.P. Ramos, Nuclear Inst. and Methods in Physics Research B 463 (2020) 201–210.

ISOL target release

Release curve:

 $\varepsilon_{rel}(\lambda) = \int_0^\infty e^{-\lambda t} p(t) dt$

$$p(t) = \int_0^t p_D(\tau) p_E(t-\tau) d\tau$$

2. Target materials

Where:

 $p_D(t)$: release curve relative to the diffusion process

 $p_{E}(t)$: release curve relative to the effusion process

[0,τ]: time interval for diffusion

[τ,t]: time interval for effusion

Diffusion (in spherical particles)

2. Target materials

Diffusion release curve and efficiency: $\frac{dc}{dt} = D\nabla^2 c$

 $D = D_0 e^{-\frac{E_D}{RT}}$

 $p_D(t) = \frac{6\mu}{\pi^2} \sum_{n=1}^{\infty} e^{-n^2\mu t}$

 $\mu = \pi^2 \frac{D}{r}$

$$\varepsilon_D(t) = \frac{6\mu}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-(\lambda + n^2\mu)t}}{\lambda + n^2\mu}$$

Where:

c: concentration

D: diffusion coefficient [m²/s]

 E_{D} : activation energy for diffusion [J/mol]

r: spherical particle radius [m]

Effusion

Release curve:

 $p_E(t) = v e^{-vt}$

 $\varepsilon_E(\lambda) = \frac{v}{v+\lambda}$

 $\tau_E = \frac{1}{v} = \omega(\tau_s + \tau_f)$

Where:

v: time constant

ω: mean number of collisions

 τ_s : sticking time per collision

 τ_{f} : flight time between collisions

ISOL target release: diffusion + effusion

2. Target materials

Release curve:

$$\varepsilon_{rel}(\lambda) = \frac{3v}{v+\lambda} \left(\frac{Wcoth(W) - 1}{W^2} \right)$$

$$W = \pi \left(\frac{\lambda}{\mu}\right)^{\frac{1}{2}}$$

$$p(t) = \frac{6\mu v}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-vt} - e^{n^2 \mu t}}{v + n^2 \mu}$$

For short lived isotopes and fast effusion (v>> λ > μ), $\varepsilon(\lambda) = \frac{3}{r} \left(\frac{D}{\lambda}\right)^{\frac{1}{2}}$

- Work at the highest possible temperature
- Keep grain size as small as possible

ISOL target materials: thermomechanical stability

2. Target materials

Temperature

1st principal stress

Production process should optimize:

- Thermal conductivity
- Emissivity
- Strengthening mechanisms

ISOL target materials: performance consistency

2. Target materials

A. Gottberg, Nuclear Inst. and Methods in Physics Research B 376 (2016) 8-15.

ISOL target materials requirements

Target working conditions:

- Many days of continuous operation (10 ÷ 15)
- $T = 1600 \div 2000$ °C, even more in some cases
- Tens of kW power to dissipate (irradiation)
- High vacuum •
- Radiation (p, n, γ , α , β , ...) •

Carbide/carbon composites (UC₂+2C, TiC+2C, ThC₂+2C, ...)

2. Target materials

Two sets of properties to optimize: nanostructure-porosity and thermo-mechanical

stable release of isotopes

High thermal properties to efficiently dissipate heat

ISOL target materials

2. Target materials

- <u>Oxides</u>: usually constituted by sintered powders, fibers or films deposited onto highly permeable substrates. HfO₂, ZrO₂, Al₂O₃, CaO. Production of Ar and F. Reactivity issues (es. Al₂O₃ in contact with graphite), sintering a big problem for long-term operation. Low thermal conductivity!
- <u>Borides</u>: the more refractory ones have shown a too slow release. In some cases, as for CaB₆, the release was fast, but the amount of impurities contained in the material was too high, thus causing malfunctions in the ion source functioning.
- <u>Sulfides</u>: only a few sulfides are sufficiently refractory to be used as ISOL targets. In particular, CeS has been used for the production of p-rich Cl and P isotopes. Limiting temperature issues in contact with graphite. Not so many refractory ones available.
- <u>Pure metals</u>: metals, either in the form of sintered powders or thin foils have been extensively used as ISOL targets, especially for spallation-based production. The most used metals belong to groups 4 and 5 of the periodic table, since they possess very high limiting temperatures and guarantee fast release of isotopes. Less useful with low energy primary beams. Liquid metals promising but corrosive!
- <u>Carbides</u>: most used materials for ISOL targets, many off-line and on-line tests have been done to demonstrate their capability of fast releasing of short-lived isotopes. To obtain a faster release of isotopes, often the material used as a target consists in a dispersion of the desired carbide in a matrix of excess carbon.

ISOL target materials

Table 2

Overview (not exhaustive) of studied ISOL target materials. Underlined are materials that are currently, or have been recently, used for operations. (*) Engineered micro- or nano-structures have been developed for this material.

ISOL target materials				
Molten	Solid metals	Oxides	Carbides	Others
Au [24,25] Ag [25] Bi [24] Cd [34] Ce [25] Ce_3S_4 [31] Er:Cu [24,25] Ge [47,34] Gd:Cu [25] Hg [34] La [34,51] La:Th [34] La:X [34] NaF:LiF [53] NaF:ZrF ₄ [53] NaF:ZrF ₄ [53] Nd [25] Pr [25] Pr [25] Pr:B [24] Sc:La [34] Sc:La [34] TeO ₂ :KCI:LiCI [32] ThF ₄ :LiF [24] Pb [34,51] Pb:Bi [62] Y:La [34] U [63] U:Cr [34] Zn [34]	Cm [26] Hf [30] Ir [32,29] Ir/C [35] <u>Ir/Ta [37]</u> Mo [41] <u>Nb [35,44]</u> Os [32] Pu Pt/C [44] Re [35,32] Re/C [30] Ru [32] Ru/C [30] Si layers [41] Sn/C [44] <u>Ta* [35,57,29]</u> <u>Ti [35,44]</u> Th [41,26] Th/Nb [35] U [26] U/C [32] V [35,31] W [31] Zr [35,59]	$\begin{array}{l} Al_2 O_3^{*} [27,28] \\ B_2 O_3 [29] \\ B_3 O [33] \\ Be O [36,29,28] \\ \hline Ca O^{*} [33,42,45] \\ \hline Ce O_2 [48] \\ Cr_2 O_3 [32] \\ Hf O_{2*} [50] \\ La_2 O_3 [48] \\ Mg O [33,45,28] \\ NiO [54] \\ Sr O [55] \\ Ta_2 O_3 [30,32] \\ \hline Th O_2^{*} [48,32,50] \\ Ti O_2^{*} [50] \\ UO_2 [59] \\ Y_2 O_3^{*} [61] \\ \overline{Zr O_2} [34,32,50] \end{array}$	AlC ₂ [29] B_4C [29] C (gr) [29,28] C (MWCNT)* [37–39] CaC_2 [43] CmC_x [26] GdC_x [49] LaC_2* [33] scC_2 [35,33] siC^* [32,44,27,28] TaC_x [32,33] ThC_2 [44,33,26,56] TiC^* [32,38] UC_x* [58,31,26,56] VC [31,32] ZrC [32,59,49]	AlN [28] BaB ₆ [31] BaZrO ₃ [31] BN [28] Ca-zeolite [40] CaB ₆ [33] Ce(OH) ₄ [46] CaF ₂ [43] CeB ₆ [31] <u>CeS</u> [31,28] LuF ₃ [52] Na-zeolite [40] Ta ₅ Si ₃ [32] Hf ₅ Ge ₃ [32] Hf ₅ Sn ₃ [32] Ta ₅ Si ₃ [32] Tl-zeolite [40] Th(OH) ₄ [46] Zr ₅ Ge ₃ [32,28] Zr ₅ Si ₃ [32,28]

A. Gottberg, Nuclear Inst. and Methods in Physics Research B 376 (2016) 8-15.

2. Target materials

ISOL target materials

2. Target materials

J.P. Ramos, Nuclear Inst. and Methods in Physics Research B 463 (2020) 201–210.

A. Gottberg, Nuclear Inst. and Methods in Physics Research B 376 (2016) 8-15.

Carbides

2. Target materials

Generally speaking, a carbide is a compound formed by carbon with other elements with lower or about equal electronegativity. Most of these compounds are ceramics, and some of them are actually refractory, since they have high thermal and chemical stability and can therefore be used in extreme environments.

Synthesis:

- Direct reaction of metal with carbon: $xM + yC \rightarrow MxCy$
- Reaction of metal with gas (hydrocarbons): thin films
- <u>Carbothermal reduction: oxide + carbon \rightarrow carbide + CO (high vacuum)</u>
- Sol-gel process: lower temperature for the synthesis, followed by carbothermal reduction

Production techniques: traditional

3. Production

Carbothermal reduction Oxide + carbon \rightarrow Carbide + (carbon) + CO

 $La_2O_3 + C$ after pressing

LaC₂ + 2C after heat treatment

Optimization of properties by:

- Choice of carbon precursors and residuals
- Heat treatment parameters

Production techniques: traditional

3. Production

Production techniques: sol-gel

3. Production

Sol to gel

TiC targets after

thermal treatment

(sintering)

Optimization of properties by:

- Choice of organic/inorganic precursors
- Sol-gel conditions
- Heat treatments parameters

Production techniques: casting

3. Production

600

500

400 E

100

1.5

carbothermal

reduction

completion

10 µm

1

CO release

Time (h)

Optimization of properties by:

- Choice of carbon precursors and residuals (and backing)
- Heat treatment parameters

M. Cervantes, P. Fouquet-Métivier, P. Kunz, et al., Nuclear Instruments and Methods in Physics Research B 463 (2020) 367-370.

0.2

0.1

0

evaporation

of water and plasticizers

0.5

Production techniques: electrospinning

S. Chowdhury, L. Maria, A. Cruz, et al., Nanomaterials 10 (2020) 2458.

Production techniques: additive manufacturing

3. Production

Printing process

After thermal treatment

(sintering)

Optimization of properties by:

- Choice of organic/inorganic precursors
- Printing stage
- Heat treatments parameters

Additive Manufacturing of ceramics

infographic courtesy of Hybrid Manufacturing Technologies

AM Technology	Feedstock (liquid, paste, powder, filament)	Part dimension ^{\$} (size that can be produced economically)	Surface (quality of parts, not of single struts)	Printing resolution
Binder jetting	Powder	M-XL	Medium	100 µm
Inkjet printing	Liquid	XS-M	High	10 µm
Laminated object manufacturing	Paste	M-L	Low	100 µm
Direct ink writing	Paste	S-XL	Low	60 µm
Fused deposition modeling	Filament	M-XL	Low	100 µm
Vat photopolymerization	Liquid	XS-M	High	25 µm
Two-photon polymerization	Liquid	XS-S	High	< 1 µm

^{\$}: XS = 100 μm; S = 1 mm; M = 10 mm; L = 0.1 m; XL = 1 m

P. Colombo, J. Schmidt, G. Franchin, A. Zocca, J. Günster, Bull. Am. Ceram. Soc., 96 (2017) 16.

3. Production

3. Production

C.B. Carter, M.G. Norton, Ceramic Materials, Science and Engineering, 2nd edition, Springer, New York, 2013

Characterization: micro and nanostructure

4. Characterization

Electron microscopy

Scanning electron microscopy to study microstructure

Transmission electron microscopy to study nanostructure

A. Zanini, S. Corradetti, S.M. Carturan, et al., Microporous and Mesoporous Materials 337 (2022) 111917. L. Biasetto, S. Corradetti, S.M. Carturan, et al., Scientific Reports 8 (2018) 8272.

4. Characterization

Amount of pores

4. Characterization

Type and size of pores – micropores (<2 nm), mesopores (between 2 and 50 nm)

4. Characterization

D. Sciti, S. Corradetti, et al., Journal of the European Ceramic Society, in press, https://doi.org/10.1016/j.jeurceramsoc.2024.04.072

4. Characterization

https://www.micromeritics.com/autopore-v/

4. Characterization

4. Characterization

 $k = \alpha \cdot \rho \cdot c_p$, where: k thermal conductivity [W/m*K], α thermal diffusivity [m²/s], ρ density [kg/m³], c_p specific heat [J/kg*K]

4. Characterization

Thermal conductivity – steady state and inverse analysis

Minimizing a residual function $J(\mathbf{f}) = \sum_{i=1}^{N_{CS}} \left[T_{C_{COMP_i}}(\mathbf{f}) - T_{C_{_MEAS_i}} \right]^2 + \left[T_{P_{COMP_i}}(\mathbf{f}) - T_{P__MEAS_i} \right]^2$, where $f = \{f_1, f_2, f_3\} = \{C_0, C_1, C_2\} \rightarrow k = C_0 + C_1 \cdot T + C_2 \cdot T^2$

4. Characterization

M. Ballan, S. Corradetti, M. Manzolaro, et al., Materials 15 (2022) 8358.

S. Corradetti, M. Manzolaro, A. Andrighetto, et al., Nuclear Instruments and Methods in Physics Research B 360 (2015) 46–53.

4. Characterization

4. Characterization

Tensile, flexural or compression mechanical properties

4. Characterization

Use of thermal gradients to measure mechanical properties

4. Characterization

Use of thermal gradients to measure mechanical properties

Characterization: limiting temperature

4. Characterization

Characterization: physico-chemical stability

4. Characterization

J.P. Ramos, A.M.R. Senos, T. Stora, et al., Journal of the European Ceramic Society 37 (2017) 3899-3908.

Characterization: physico-chemical stability

4. Characterization

M. Cervantes, P. Fouquet-Métivier, P. Kunz, et al., Nuclear Instruments and Methods in Physics Research B 463 (2020) 367–370.

S. Corradetti, S.M. Carturan, M. Ballan, et al., Scientific Reports 11 (2021) 9058.

Characterization: release

4. Characterization

J.P. Ramos, A. Gottberg, R.S. Augusto, et al., Nuclear Inst. and Methods in Physics Research B 376 (2016) 81-85. S. Corradetti, L. Biasetto, M. Manzolaro, et al., The European Physical Journal A 49 (2013) 56.

Characterization: release

4. Characterization

B. Hy, N. Barré-Boscher, A. Özgümüs, et al., Nuclear Inst. and Methods in Physics Research B 288 (2012) 34-41.

S. Tusseau-Nenez, B. Roussière, N. Barré-Boscher, et al., Nuclear Inst. and Methods in Physics Research B 370 (2016) 19-31.

Simulations: diffusion

5. Simulations

Simulations: effusion

5. Simulations

B. Mustapha, J.A. Nolen, Nuclear Inst. and Methods in Physics Research B 204 (2003) 286-292. A. Pichard, P. Jardin, M.G. Saint-Laurent, et al., Review of Scientific Instruments 81 (2010) 02A908.

Simulations: overall release

5. Simulations

L. Egoriti, S. Boeckx, L. Ghys, et al., Nuclear Inst. and Methods in Physics Research A 832 (2016) 202-207.

Target examples: UC_X

Table 1

Typical target and driver parameters at different RIB facilities using the respective geometries. For all calculations UC_x following the established composition $(UC_2 + 2C)$ and density (3.5 g/cm³) was used.

	Particle	Typical beam energy [MeV]	Typical beam current [µA]	Typical beam power [kW]	Instantaneous power if pulsed [GW]	Typical UC _x target thickness [g/cm ²]	Typical UC _x target diameter [cm]	Integrated ⁷ stopping power [MeV]	Absorbed power in target material ³ [kW]	Max. power density ³ [kW cm ⁻³]
ISOLDE-CERN	р	1400	2	2.8	pulsed, 1.2 ⁸	≈ 45	1.4	70	0.2	0.02
SPES-INFN [8]	р	40	200	8	c.w.	2.3	4.0	31	6.6	1.9
iThemba LABS [18]	р	70	115	8	c.w.	5.9	4.0	35	4.2	0.6
RISP-IBS [10]	р	70	140	10	c.w.	8.7	5.0	60	8.3	0.4
ISAC-TRIUMF	р	480	100 ¹	48	c.w.	≈ 18	1.8	60	4.0	1.5
ARIEL-TRIUMF ²	$e \rightarrow \gamma$	35	2800	100	pseudo c.w. ⁹	≈ 11	4.0 ⁴	$35 \rightarrow NaN$	54 → 11	7.8 → 1.1
SPIRAL2-GANIL [19] ⁵	$d \rightarrow n$	40	5000	200	pseudo c.w. ¹⁰	≈ 8.9	8.0	$40 ightarrow 0^6$	$199 \rightarrow 0.4$	$49 \rightarrow 0.002$

 1 Due to the current license the operation of actinide targets is restricted to 10 μ A.

² ARIEL will have two target stations using 35–75 MeV electrons and 480 MeV protons (see ISAC-TRIUMF) respectively, values are based on the current electron target concept.

³ Includes contribution from the fission process.

⁴ Due to the limited interaction range of the photon the cylindrical target will likely be oriented perpendicular to the beam.

⁵ For the calculations the design for a 50 kW neutron converter [20] was used.

⁶ Not considering neutrons that induce fission reactions.

⁷ Integrated over the full target thickness.

 $^8\,$ The proton beam at ISOLDE-CERN is pulsed with ${\sim}3\cdot10^{13}$ protons within a 2.4 μs bunch.

⁹ The ARIEL linac is delivering <8 pC electron bunches with bunch length of 35 ps and bunch repetition rates of 650 MHz.

¹⁰ The GANIL driver linac is based on 88 MHz operation with a bunch length of 1.6 ns [21].

A. Gottberg, Nuclear Inst. and Methods in Physics Research B 376 (2016) 8-15.

Target examples: "standard" UC_x (or other MCx)

6. Examples

The uranium dioxide and graphite powders were mixed following eq. (1):

 $UO_2 + 6C \longrightarrow UC_2 + 2C + 2CO_g.$ (1)

The UO₂ (powder mean grain size $< 300 \,\mu\text{m}$) was purchased from CERAC Inc. (Milwaukee, WI, USA) and graphite (powder mean grain size $< 45 \,\mu\text{m}$) from Sigma-Aldrich. These powders were used as received. Powders were manually ground and mixed in an agate mortar, inside a glove-box (O_2 and $H_2O < 1$ ppm), the weight percentages of the powders complying with the stochiometry of eq. (1) and 2 wt.% of phenolic resin was added as a binder. After mixing, the powders were placed in a 13 mm diameter mold and were uniaxially cold pressed at 750 MPa. The pressed samples possessed a nominal diameter of 13 mm, 1 mm thickness and a mass of approximately 500 mg. The thermal treatment was performed under high vacuum $(10^{-4}-10^{-5} \text{ Pa})$ in a graphite crucible using the experimental setup described in [8]. The heating schedule was designed to

- 1. promote the carbothermal reaction (2 $^{\circ}{\rm C/min}$ up to 1250 $^{\circ}{\rm C},$ 24 h at 1250 $^{\circ}{\rm C})$ and
- 2. sinter the carburized powders (2 $^{\circ}\mathrm{C/min}$ up to 1600 $^{\circ}\mathrm{C},$ 4 h at 1600 $^{\circ}\mathrm{C}).$

Total porosity	30-60 %
Porosity type	Mainly open, macro
Specific Surface Area	Negligible

Oxide + Carbon (graphite) \rightarrow Carbide + graphite + CO

D. Scarpa, L. Biasetto, S. Corradetti, et al., The European Physical Journal A 47 (2011) 32.

Going beyond standard: how to

Target examples: nano UCx-MWCNTs

Focus on (among others) nanostructure and long-term stability – Carbon source

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Target examples: nano TiC

6. Examples

Focus on (among others) nanostructure and long-term stability – Carbon source

Nano-Oxide + MWCNTs (or carbon black) \rightarrow Nano-carbide + Nano-carbon + CO

J.P. Ramos, A.M.R. Senos, T. Stora, et al., Journal of the European Ceramic Society 37 (2017) 3899-3908. J.P. Ramos, T. Stora, A.M.R. Senos, et al., Journal of the European Ceramic Society 38 (2018) 4882-4891.

Target examples: nano CaO

6. Examples

Focus on (among others) nanostructure and long-term stability – Thermal process

In order to obtain nanometric CaO powder, a CaCO₃ powder (Alfa Aesar, Germany) precursor with an average grain size $< 5 \,\mu\text{m}$, 99.5% pure (metal basis) was decomposed in vacuum ($\approx 10^{-1}$ Pa), at 800 °C, for 2 h, with heating and cooling rates of 10 °C min⁻¹. This decomposition temperature was chosen in a previous study [10] as the one that guarantees the complete conversion and high specific surface area powders. The decarbonation was done in a vertical alumina tube furnace (Termolab, Portugal), with a mullite support for the alumina crucible, connected to a rotary pump. At the end of

x10⁻

2.0

1.5

1.0

0.5

0.0

10

Pore volume (cm³ (g Å)⁻¹)

Target examples: UCx fibers

6. Examples

Focus on (among others) nanostructure and long-term stability – Production technique

As produced (U salt containing O, C, H)

Target examples: porous UCx

6. Examples

Tantalum crucible

Platinum

wire

UCx

target

Graphite

disk

No.7

Focus on (among others) porosity optimization - grinding

Table 2

Summary of the carburized samples with the different quantitative variables used. P_{35} , P_{200} , P_{30000} , P_{10000} and P_{30000} represent the percentages of open porosity on the diameter pores 0.035 μ m, 0.2 μ m, 3 μ m, 10 μ m and 30 μ m, respectively.

	XRD*					BET	SEM	He Pycno	metry	Hg P	orosime	etry		
	Phase (%, ±	and prop 1%)	ortion	Crystallit ± 5 nm)	te size (nm,	UCx Grain size (nm)**	UCx Aggregate size (µm)	Porosity ((%, ± 1%)	Oper	i pore si	ize distri	bution (%)
	UC	UC ₂	С	UC	UC ₂	_		Open	Close	P ₃₅	P ₂₀₀	P ₃₀₀₀	P ₁₀₀₀₀	P ₃₀₀₀₀
No.1 UO ₂ ground + CNT CP	3	88	9	59	87	118	15	78	7	22	10	10	0	58
No.2 UO ₂ ground + CNT DP	5	86	9	39	114	100	0.5	68	12	34	32	34	0	0
No.3 UO ₂ ground + graphene GP	4	88	8	51	129	1200	18	49	7	3	22	56	0	19
No.4 OXA + graphite CP	4	87	9	55	160	820	23	55	5	2	12	86	0	0
No.5 OXA ground + CNT DP	13	78	9	40	127	94	0.6	70	15	24	29	47	0	0
No.6 OXA + CNT DP	7	84	9	65	149	82	3.2	74	14	17	17	66	0	0
No.7 PARRNe BP894	5	86	9	102	165	906	31	41	5	4	14	82	0	0
No.8 PARRNe BP897 CP	5	87	8	38	145	972	65	51	5	2	8	46	44	0
No.9 PARRNe BP897 CP 12d	5	87	8	46	144	914	56	49	8	2	5	49	44	0
No.10 UO ₂ ground + CNT CP	3	88	9	48	86	100	71	72	13	19	13	10	0	58
12d														
No.11 UO ₂ ground + CNT DP 12d	5	86	9	42	110	96	0.5	64	17	30	33	37	0	0
No.12 UO ₂ ground + graphene GP 12d	4	88	8	43	135	1412	14	48	4	3	17	65	0	15
No.13 UO ₂ ground + CNT-5 mol DP	5	90	5	57	119	104	0.6	64	8	29	27	35	0	9
No.14 UO ₂ ground + CNT-7 mol DP	4	84	12	40	102	92	0.2	69	15	33	37	30	0	0
Standard deviation	2	3	1	16	24	484	26	11	4	12	10	22	15	20

* For all the samples, the agreement factors were in the ranges: 11.6% < R_w < 14.8%, 5.8% < R_{exp} < 7.3%, 1.9 < χ^2 < 2.3.

** Error bar of SSA measurements is 5%.

J. Guillot, S. Tusseau-Nenez, B. Roussière, et al., Nuclear Inst. and Methods in Physics Research B 433 (2018) 60–68.

J. Guillot, B. Roussière, S. Tusseau-Nenez, et al., Nuclear Inst. and Methods in Physics Research B 440 (2019) 1–10.

a)

100

60

20

(%)

Released Fraction

Target examples: macroporous LaCx

6. Examples

Focus on (among others) porosity optimization – Sacrificial fillers

S. Corradetti, L. Biasetto, M.D.M. Innocentini et al., Ceramics International 42 (2016) 17764–17772.

Target examples: micro-mesoporous TiC

6. Examples

Optimization of properties by:

- Choice of initial reagents
- Temperature, pH of each production phase
- Heat treatments parameters

TiiP + ph. resin \rightarrow TiC + 2C

Total porosity	65 %
Porosity type	Mostly open, meso (<50 nm)
Specific Surface Area	Very high (530 m²/g)

TiiP + sucrose \rightarrow TiC + 2C

Total porosity	65 %
Porosity type	Totally open, micro (< 2 nm)
Specific Surface Area	Very high (650 m²/g)

A. Zanini, S. Corradetti, S.M. Carturan, et al., Microporous and Mesoporous Materials 337 (2022) 111917.

Target examples: additive manifactured TiC

6. Examples

Target examples: cast UCx

6. Examples

Focus on (among others) thermal stability – Production technology

M. Cervantes, P. Fouquet-Métivier, P. Kunz, et al., Nuclear Instruments and Methods in Physics Research B 463 (2020) 367–370.

Target examples: thermally improved UCx

6. Examples

Focus on (among others) thermal stability – Carbon sources

Use of graphene as a carbon source:

- Improvement of thermal properties •
- No effect on reactivity and reaction completion

 $UO_2 + 6C \rightarrow UC_2 + 2C + 2CO$

 $ThO_2 + 6C \rightarrow ThC_2 + 2C + 2CO$

Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?

Lu Wang, Zdenek Sofer, and Martin Pumera*

Cite this: ACS Nano 2020, 14, 1, 21–25 Publication Date: January 14, 2020 https://doi.org/10.1021/acsnano.9b00184 Copyright © 2020 American Chemical Society. This publication is available under these Terms of Use.

L. Biasetto, S. Corradetti, S.M. Carturan, et al., Scientific Reports 8 (2018) 8272.

S. Corradetti, S.M. Carturan, M. Ballan, et al., Scientific Reports 11 (2021) 9058.

RIS

Target examples: mechanically improved SiC

6. Examples

Focus on (among others) structural stability – Production technology

Use of dispersed carbon fibers:

- Porosity, but...
- Good thermal properties, and...
- Resistance to thermal induced stresses

L. Silvestroni, S. Corradetti, M. Manzolaro, et al., Journal of the European Ceramic Society 42 (2022) 6750-6756.

...now, what about chemistry?

Target Material	Operated Temperature, °C	Release Conditions	
^{nat} Ti metallic foils	>1600	W surface ion source. Fluorination with CF ₄ . Only Sc ⁺ and ScF ⁺ observed and target molten after mass separation [36].	
^{nat} TiC (1–50 μm)	1900	Slow release that did not increase by fluorination with CF ₄ [28].	Solutions are being
_	2300	No Sc released [31].	
nat TiC-CNT (nanometric)	1500	No Sc released. [20].	developed (e.g. molecul
nat TiC-CB (nanometric)	1500-1740	Re surface source. No Sc was released. [20].	beams), see next talks
^{nat} V powder	1800	No Sc released [31].	
nat VC (1–50 µm)	1900	Slow release that did not increase by fluorination with CF ₄ [28].	
ν C (1-50 μm) –	2300	No Sc released. Higher other radionuclide release rates than from ^{nat} TiC [31].	

Table 2. Sc radionuclide release from target materials used at ISOLDE

E. Mamis, C. Duchemin, V. Berlin, et al., Pharmaceuticals 17 (2024) 390.

Thank you!

