KU LEUVEN

fundamental research fellowship Marie Deseyn

Self-Sputtering: An Overlooked Key in Implantations

Marie Deseyn & Michael Heines

What is self-sputtering?

https://www.youtube.com/watch?v=ksrfzzpuKdc

What is self-sputtering?

What is self-sputtering?

AIM: investigate ψ_{crit}

- Know when to replace foils
- Maximize ψ_{crit}

 \rightarrow With the use of TRIDYN

The dynamics inside the sample

The dynamics inside the sample

Foil & energy of the beam

Implantation in:

- AI
- Zn
- Salt
- Sugar

At:

- 30keV
- 60keV
- 100keV
- 200keV

Foil & energy of the beam

MAXIMIZE ψ_{crit}

- Decrease Z of foil
 - Al instead of Zn @ CERN-MEDICIS
 Implantation of K, Ag, La in glassy carbon for nuclear charge radius determination
- Maximize the energy of the ions

Foil & energy of the beam

MAXIMIZE ψ_{crit}

• Decrease Z of foil

- Al instead of Zn @ CERN-MEDICIS
 Implantation of K, Ag, Au, La in glassy carbon for nuclear charge radius determination
- Maximize the energy of the ions
- Broaden the implantation spot

Estimating errors on the analysis

- No way to guess errors coming from:
 - Crystal structure
 - Surface binding energy

• Statistical uncertainty: Multiple simulations with different seeds

"Real-life" examples – medical isotope collections

• ¹⁶⁷Tm collection

Heinke, Reinhard et al. "Efficient Production of High Specific Activity Thulium-167 at Paul Scherrer Institute and CERN-12 MEDICIS." Frontiers in medicine vol. 8 712374, 12 Oct. 2021. doi:10.3389/fmed.2021.712374

"Real-life" examples - medical isotope collections

- ¹⁶⁷Tm collection
- ¹⁵⁵Tb collection

 \circ 5.4(3)MBq impinging on the foil \leftrightarrow 2.69(10)MBq retained on the foil \circ TRIDYN simulation: 2.60(15)MBq retained

- Implantation of Yb in Zn and AI (high current implanter at IMBL)
- RBS (Rutherford Backscattering Spectrometry)

- Implantation of Yb in Zn and AI (high current implanter at IMBL)
- RBS (Rutherford Backscattering Spectrometry)

Implantation procedure:

- All foils implanted with 1\AA^{-2}
- All foils removed from vacuum to remove foil 1
- All foils except foil 1 put back to implant 1Å⁻² (total implanted: 2Å⁻²)
- All foils removed from vacuum to remove foil 2

Importance of buildup of native layer of Al₂O₃

 \rightarrow Experiment in between bulk Al₂O₃ and native layer of Al₂O₃ on bulk Al

In practice

In practice

 $c_{\text{int.}}^{crit} \approx 2\pi e \psi_{tot,crit}^{\text{pure X}} \sigma_r^2$

ψ^{crit}	$C_5H_5O_6$		$C_6H_{10}O_5$	
$[\text{\AA}^{-2}]$	30keV	60keV	30keV	60keV
Sc	$11.280^{+(60)}_{-(130)}$	$12.000^{+(60)}_{-(60)}$	$12.000^{+(60)}_{-(60)}$	$12.000^{+(60)}_{-(60)}$
Cu	$7.560^{+(60)}_{-(130)}$	$12.000^{+(60)}_{-(60)}$	$9.240^{+(60)}_{-(130)}$	$12.000^{+(60)}_{-(60)}$
Sm	$5.160^{+(130)}_{-(60)}$	$7.440^{+(60)}_{-(60)}$	$6.600^{+(60)}_{-(60)}$	$9.480^{+(60)}_{-(60)}$
Tb	$5.760^{+(130)}_{-(60)}$	$8.280^{+(60)}_{-(60)}$	$7.440^{+(60)}_{-(130)}$	$10.320^{+(60)}_{-(60)}$
Tm	$5.400^{+(60)}_{-(130)}$	$7.560^{+(60)}_{-(60)}$	$6.720^{+(60)}_{-(60)}$	$9.480^{+(60)}_{-(60)}$
Ac	$7.800^{+(130)}_{-(60)}$	$10.200^{+(60)}_{-(130)}$	$10.200^{+(60)}_{-(60)}$	$12.000^{+(60)}_{-(60)}$

ψ^{crit}	Al		Zn		ψ^{crit}	NaCl		NaNO ₃	
$[\text{\AA}^{-2}]$	30keV	60keV	30keV	60keV	$[\text{\AA}^{-2}]$	30keV	60keV	30keV	60keV
Sc	$4.32^{+(13)}_{-(13)}$	$10.080^{+(60)}_{-(130)}$	$0.600^{+(60)}_{-(130)}$	$1.440^{+(60)}_{-(130)}$	Sc	$2.400^{+(60)}_{-(60)}$	$5.040^{+(60)}_{-(130)}$	$4.080^{+(130)}_{-(60)}$	$8.640^{+(60)}_{-(130)}$
Cu	$3.000^{+(60)}_{-(130)}$	$5.520^{+(60)}_{-(130)}$	$0.360^{+(60)}_{-(60)}$	$0.840^{+(60)}_{-(60)}$	Cu	$1.680^{+(60)}_{-(60)}$	$3.000^{+(60)}_{-(60)}$	$2.760^{+(60)}_{-(130)}$	$5.160^{+(60)}_{-(130)}$
Sm	$2.040^{+(60)}_{-(130)}$	$2.88^{+(13)}_{-(13)}$	$0.240^{+(60)}_{-(60)}$	$0.480^{+(60)}_{-(60)}$	Sm	$1.080^{+(60)}_{-(60)}$	$1.560^{+(60)}_{-(60)}$	$2.160^{+(60)}_{-(130)}$	$3.000^{+(60)}_{-(60)}$
Tb	$2.160^{+(60)}_{-(60)}$	$3.120^{+(130)}_{-(60)}$	$0.360^{+(60)}_{-(60)}$	$0.480^{+(60)}_{-(60)}$	Tb	$1.200^{+(60)}_{-(60)}$	$1.680^{+(60)}_{-(60)}$	$2.160^{+(60)}_{-(60)}$	$3.000^{+(130)}_{-(60)}$
Tm	$2.040^{+(130)}_{-(60)}$	$2.880^{+(130)}_{-(60)}$	$0.240^{+(130)}_{-(60)}$	$0.480^{+(60)}_{-(130)}$	Tm	$1.080^{+(130)}_{-(60)}$	$1.560^{+(60)}_{-(60)}$	$2.160^{+(60)}_{-(130)}$	$3.000^{+(60)}_{-(60)}$
Ac	$2.040^{+(60)}_{-(130)}$	$2.640^{+(60)}_{-(130)}$	$0.240^{+(60)}_{-(60)}$	$0.360^{+(60)}_{-(130)}$	Ac	$1.200^{+(60)}_{-(130)}$	$1.440^{+(130)}_{-(60)}$	$2.280^{+(130)}_{-(60)}$	$3.120^{+(60)}_{-(130)}$

Conclusion

- Self-sputtering is not neglectable for collection of many particles (~ 10¹² 10¹⁴ particles depending on Z values and beam spot)
- Self-sputtering minimized by:
 - Increasing implantation surface
 - Increasing implantation energy
 - Investigating foil material
 - o Foil replacement
- TRIDYN simulations = good first estimate BUT be mindful of the input:
 - Oxide layer
 - Crystal structure
 - \circ Surface binding energy matrix

KU LEUVEN

11P6V24N – fundamental research fellowship Marie Deseyn

Thank you!