

Exotic cyclotrons for innovative radionuclides

The ARRONAX cyclotron example

Dr Nathalie Michel on behalf of the ARRONAX team and the PRISMA team

Radionuclides for nuclear medecine

Highly penetrating radiations for diagnostic (X, γ , β^+) Low penetrating radiations for therapy (α , β -, Auger e-)

Where medical radionuclides are coming from ?

Few can be extracted directly from « nature » :

Those belong to radioactive decay chain of heavy nuclei

²²³Ra: belongs to the radioactive chain of 235 U. *Xofigo*® (RaCl₂) available for bone metastases.

²¹²Pb/²¹²Bi: belongs to the radioactive chain of ²³²Th

 $^{\bf 225} Ac$: belongs to the radioactive chain of $^{\rm 233} U$

Where medical radionuclides are coming from ?

Otherwise they are artificially produced in reactors/accelerators

Nuclear Reactors

Physics of Radiation InteractionS with Matter and

Accelerators: Cyclotrons or Lineac

Where medical radionuclides are coming from ?

Reactors vs cyclotrons

Reactor advantages
 High yield
 Low cost production
 Ease of target preparation

Cyclotron advantages
 Easier supervision, safety
 Maintenance and decommissioning costs lower
 Radioactive waste less than 10% of the amount by reactor
 Lower radiation level
 No risk of nuclear proliferation

• They are complementary

Source : Wang et al *

*Wang Y, Chen D, Augusto RDS, Liang J, Qin Z, Liu J, Liu Z. Production Review of Accelerator-Based Medical Isotopes. Molecules. 2022 Aug 19;27(16):5294. doi: 10.3390/molecules27165294.

How to choose the best irradiation conditions ?

Identify all possible production route: different projectile/energy/target combinations

Select the most promising one based on production yield, contaminants, costs ...

Remark: Target material are often chosen amongst stable or very long lived radionuclides.

Reminder

It is mandatory to fulfil physics laws:

- Charge conservation and mass conservation
- \succ Energy conservation \rightarrow an energy threshold exists in most cases

Few examples for medical radionuclides:

р	+	¹⁸ O	\rightarrow ¹⁸ F	+	n
а	+	²⁰⁹ Bi	\rightarrow ²¹¹ At	+	2 n
n	+	¹⁷⁶ Yb	ightarrow ¹⁷⁷ Yb	+	γ
γ	+	⁶⁸ Zn	\rightarrow ⁶⁷ Cu	+	р

 $E_{threshold}$ = 2,574 MeV $E_{threshold}$ = 20,718 MeV $E_{threshold}$ = 0 MeV $E_{threshold}$ = 9,977 MeV

There is not one fit all cyclotrons

⁶⁷Ga, ¹¹¹In, ¹²³I, ²⁰¹Tl, ⁶⁸Ge

⁸²Sr, ^{117m}Sn

Туре	The Energy of Particles [MeV]	Application
Small medical cyclotron	<20	Short-lived radioisotopes for PET
Medium-energy cyclotron	20-35	Production of SPECT and some PET radioisotopes
High-energy cyclotron	>35	Production of radioisotopes for therapy

Source : Wang et al *

*Wang Y, Chen D, Augusto RDS, Liang J, Qin Z, Liu J, Liu Z. Production Review of Accelerator-Based Medical Isotopes. Molecules. 2022 Aug 19;27(16):5294. doi: 10.3390/molecules27165294

Medical cyclotrons in France

Ca

Nuclear reactions

By changing the projectile and its incident energy, one can enlarge the choice of radionuclide that can be produced using a given target/energy couple

Which parameters influence production yield ?

Which parameters influence production yield?

✓ Irradiation conditions : particle, beam energy, beam intensity, irradiation time

Projectiles are losing energy in the target

Target heating

✓ Selecting the nuclear reaction and energy range to have the highest cross section value

✓ Target properties: increasing number of atoms

- > By using a thicker target
- > By using enriched material

Contaminants are a limiting factor for production

Non isotopic contaminants can be eliminated by chemistry

Classical chemistry (chromatography using resin or liquid/liquid extraction ...)

Dry chemistry

- Production of isotopic contaminants are controlled through a combination of
 - The use of highly enriched target material (when possible)
 - Choosing the adequate projectile energy/target thickness
 - Choosing different nuclear reaction as (d,x), (α,x) ... or even indirect reactions
 - Using decay if half lives are different

However, this is not always sufficient

Mass separation can be another way to gain in purity.

ARRONAX: a cyclotron that enlarges the scope of possible

Beam	Accelerated particles	Energy range (MeV)	Intensity (eµA)	Dual beam
Proton	H-	30- 70	<375	Yes
	HH+	17	<50	No
Deuteron	D-	15-35	<50	Yes
Alpha	He++	68	<70	No

Main characteristics:

enlarge the scope of possible nuclear reactions for isotope production

→ low cross section phenomena achievable
 → Neutron source with industrial capabilities possible

ARRONAX: a cyclotron that enlarges the scope of possible

A versatile facility:

4 Vaults devoted to isotope production and connected to *hot cells* through a **pneumatic system**

Vault **P1** to accommodate soon a 18 MeV accelerator for ⁶⁴Cu production

Vault **AX** devoted to physics, radiolysis and radiobiology experiments

ARRONAX: a cyclotron that enlarges the scope of possible Physics of Radiation InteractionS with Matter and Applica

rradiation station

A range of laboratories: radiochemistry, biochemistry, radiolabelling, cell culture, chemical analysis, nuclear metrology, quality control, etc.

Example 1: the theranostic radionuclide pair ⁶⁴Cu/ ⁶⁷Cu at ARRONAX

Motivations

A New trend in medicine: personalized treatment to specific cancer profile Theranostic is a treatment strategy that combines therapeutics with diagnostics.

→ Use of a pair of radionuclides to make dosimetry prior therapy and/or see patient response

Several pairs have been identified:

⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ¹²⁴I/¹³¹I, ¹⁵²Tb/¹⁶¹Tb,...

Copper isotopes are good candidates with well known chemistry: 64 Cu (T_{1/2} = 12.7h) can be produced quite easily

 67 Cu (T_{1/2} = 61.8h) is well suited for targeted therapy

Copper 64

Main characteristics :

- + Positron emission 17.52%
- + T_{1/2} = 12.7 h

Application : PET imaging, therapeutic applications?

Main Production route : ${}^{64}Ni + p \rightarrow {}^{64}Cu + n$

Alternative production route : $^{64}Ni + d \rightarrow ^{64}Cu + 2n$

Deuteron route ⁶⁴Ni(d,2n) is competitive with (p,n) and we use it. Irradiation twice a month

We are part of a Cu-64 intercomparison setup by PRISMAP (DTU, PSI, Arronax, Polatom)

Which target for Copper 64 production ?

Dedicated target station

Pneumatic transportation

Processing hot cells

Target tilted at **15** ° Beam diameter is 20 mm→ **target area 14 cm**²

Which target for Copper 64 production ?

Target at 15° allows to increase the heat exchange surface area

Power deposition decreases if target is tilted

 $[W_{mm_3}] P = \frac{dE}{dr} . i$

Target area = 14 cm^2 instead of 4 cm^2 with same amount of material

Which target for Copper 64 production ?

Thickness deposit - (p,n) vs (d,2n) : Production yields

Nuclear	Energy range	Calculated	Target	Target
reaction	(MeV)	Yield	thickness	thickness at
		(MBq/µAh)	(µm)	15°(µm)
⁶⁴ Ni(p,n) ⁶⁴ Cu	12→9	228	120 µm	31.05 µm
⁶⁴ Ni(d,2n) ⁶⁴ Cu	16→13	206	90 µm	23.29 µm

Comparable production yield can be achieved with thinner deposit of 64 Ni in the deuteron case \rightarrow a lower initial cost of 64 Ni

Copper 64: target

Electroplating : [Ni] at 8g/L Adjusted pH with NH₄OH

Target:

Enriched (>99%) ⁶⁴Ni Electroplated on a gold backing (99,99% purity) Thickness possible until 50 µm

Copper 64: (d,2n) molar activity

Co-produced isotopes are different:

For the (d,2n) \rightarrow (d,n)⁶⁵Cu (d,3n)⁶³Cu (d,p)⁶⁵Ni ($T_{1/2}$ = 2.52h) decays to ⁶⁵Cu

63Cu STABLE 69.15%	64Cu 12.701 H ε: 61.50% β-: 38.50%	65Cu STABLE 30.85%	66Cu 5.120 M β-: 100.00%
62Ni	63Ni	64Ni	65Ni
STABLE	101.2 Υ	STABLE	2.5175 Η
3.6346%	β-: 100.00%	0.9255%	β-: 100.00%
61Co	62Co	63Co	64Co
1.650 H	1.50 M	27.4 S	0.30 S
β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%

To determine the impact of these isotopes on the final product we use:

- Data from NNDC for radioactive isotopes
- TALYS code calculation for stable isotopes

http://www.talys.eu/

For (d,2n) at 16 MeV, 1h, 1µA, we calculate **3.8 atoms of ^{64}Cu** for 1 atom of cold copper (EOB) \rightarrow Acceptable

Copper 64: purification / Co impurities

Chemistry: *dissolution in HNO*₃, *purification using chromatographic resin AG1X8*

elution profile of the irradiated target

⁶⁴ Ni is recovered (the recovery yield around 95%) for reprocessing.

Copper 64: quality control

Typical irradiation conditions :

90μA deuteron beam on target 16 MeV Deposit thickness: 10μm Duration: one night

Radioisotopic purity: >99.90% concentration: >890 MBq/mL

Radiochemical purity: Molar activity vs all metals (>10 MBq/nmol) Main contaminants: Ni, Cu, Fe, Zn, Co

Activity distributed @ calibration time (26H after EOB) : 15 GBq

Certificate of analysis provided to the final user for 64 CuCl2

Certificat d'analyse	∕. → ARRONAX
olution radiochimique de chlorure de cuivre-64	
ite de production : CYCLOTRON ARRONAX, 1 rue aronnax CS 10112, 44817 Sa	aint-Herblain cedex, France
a cuivre-64 est un radiochimique. Non destiné à l'usage humain efinition	Final media
roduction e cuivre-64 est produit par irradiation de deutoris (64Ni(d,2n)) d'une cible de lectrodéposé lalf-Life 12.701 heures	Irradiation conditions : • nuclear reaction used • Target enrichment
Juméro de lot : Cu64_220202 OB (date/time) 1/2/22 6:37 alibration Time (CT) : 2/2/22 8:00 Our reference time	
Needed because we are dea • EOB : end of beam	aling with radioactive species. Other reference time often defined :

27

2 8

Certificate of analysis provided to the final user for 64CuCl2

	<u>Caractéristiq</u>	ues
Radioactive conce	entration	1250-3500 MBq/mL
Identification	Identification	
Radionucleidic purity Chemical purity	⁶⁵ Ni/ ⁶⁴ Cu ⁵⁷ Co/ ⁶⁴ Cu ⁵⁸ Co/ ⁶⁴ Cu ⁶¹ Co/ ⁶⁴ Cu Concentration Concentr	totale des contaminants métalliques (<50ppm) ration toatle en cuivre (<25ppm)
Activité spécifique / Σmétaux		>10 MBq/nmol
Activité spécifique / Cu		>15 MBq/nmol
Apparence	limpide et inco	lore

Potential dosimetry impact (staff or patient) Waste management

Copper 64: clinical trial

⁶⁴Cu-ATSM, a potential marker of hypoxia

Clinical trial: Evaluation of ⁶⁴Cu-ATSM PET-CT as a predictor of response to neoadjuvant therapy in locally advanced rectal cancers 29 patients included to date 5 French clinical centers: Nantes, Angers, Rennes, Brest, Rouen

¹⁸F-FDG

⁶⁴Cu-ATSM

Work in progress

¹⁸F-FDG ⁶⁴Cu-ATSM ¹⁸F-FDG / ⁶⁴Cu-ATSM

Copper 64: IK18 project

Acquire a 18 MeV accelerator to enlarge our production capabilities and free up beam time on the C70.

Cost effective :

- Use of an existing vault (P1)
- Use of existing radioprotection apparatus
- Use of existing hot cells

IBA Kiube selected
180 μA version
1 solid target station compatible with the existing system

Copper 67

Properties

- Half-life to match the **bio-distribution** time: 61.8 hours
- Chemical properties to attach to the vector molecule
- **Radiation types, energies and intensities** suitable for applications: SPECT, vectorized internal radiation therapy

Production routes

Balance between :

- Cross section
- Impurities coproduction : molar activity
- Target manufacturing and chemistry

60	61	62	63	64	65
23.7 mn	3.3 h	9.7 mn	Stable	12.7 h	Stable
66	67	68	68m	69	
5.1 mn	61.8 h	30.9 s	3.7 mn	2.9 mn	

<Ε _β > (kev)	E _{βmax} (kev)	Ι _β (%)	Ε _γ (keV)	Ι _γ (%)
121	377	57	91.3	7.0
154	468	22	93.3	16.1
189	562	20	184.6	48.7

INFN LNL 👗 Padova

⁶⁷Cu production routes

⁶⁴ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁷⁰ Zn
48.3%	28%	4.1%	19%	0.6%

Target preparation and experiments

Electrodeposition of ⁷⁰Zn from ISOFLEX company on a ^{nat}Ni sheet @ GIP ARRONAX by T. Sounalet, PRISMA Team

Surface: 20x20 mm Thickness: approx. 10 μm

⁶⁴ Zn	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁷⁰ Zn
48.3%	28%	4.1%	19%	0.6%
0.1%	0.1%	0.1%	2.2%	97.5%

Stack

- 6 irradiations of2 patterns
- under vacuum
- Faraday cup used for flux measurements
- 12 cross section values

⁶⁷Cu production cross section

Con

⁶⁷Cu Thick Target Yield

To optimise production, considering ⁶⁴Cu threshold production at 26.4 MeV and the ⁷⁰Zn price, the energy range from 16 to 26 MeV is choosen, corresponding to a thickness of 575 μm of ⁷⁰Zn

35

Arnaud.Guertin@subatech.in2p3.fr

INFN LNL 🔺 Padova

Example 2 : Astate-211 (²¹¹At) from alpha particles at ARRONAX

Why α -emitters are of interest ?

Deposited energy: $E_{\alpha} \sim 5 - 9 \text{ MeV}$

➤ Highly cytotoxic

 \geq Potentially more efficient than β radiation

Why α -emitters are of interest ?

Deposited energy: $E_{\alpha} \sim 5 - 9 \text{ MeV}$

➢ Highly cytotoxic

 \succ Potentially more efficient than β radiation

Low penetration in water: 40 µm - 100 µm (5-10 typical cell diameters)

better preservation of healthy tissues

Why α -emitters are of interest ?

Deposited energy: $E_{\alpha} \sim 5 - 9 \text{ MeV}$

- Highly cytotoxic
- \succ Potentially more efficient than β radiation

Low penetration in water: 40 µm - 100 µm (5-10 typical cell diameters)

better preservation of healthy tissues

High Linear Energy transfer (~80 keV/µm)

➢ High biologic effectiveness (EBR)

Less dependant on oxygen depletion

Less impact of the cellular cycle

In radionuclide chart

Main α -emitters of medical interest

Radionuclide	Half-life (h)	# of alpha particles / decay	Eγ (keV)
Tb-149	4,1 h	0,17 (β and ε)	165
At-211	7,2 h	1	79
Bi-212	1 h	1(β)	727
Bi-213	45 m	1(2β)	440
Ra-223	11,4 d	4 (2β)	269
Ac-225	10 d	4(2β)	100
Th-226	31 m	4	111
Th-227	18,7 d	5(2β)	256

A limited number of potential candidates

Main α -emitters of medical interest

Radionuclide	Half-life (h)	# of alpha particles / decay	Eγ (keV)
Tb-149	4,1 h	0,17 (β and ε)	165
At-211	7,2 h	1	79
Bi-212	1 h	1(β)	727
Bi-213	45 m	1(2β)	440
Ra-223	11,4 d	4 (2β)	269
Ac-225	10 d	4(2β)	100
Th-226	31 m	4	111
Th-227	18,7 d	5(2β)	256

Only 4(+1) can be produced using accelerators.

Main α -emitters of medical interest

A limited number of potential candidates

	Radionuclide	Half-life (h)	# of alpha particles / decay	Eγ (keV)	
	Tb-149	4.1 h	0.17 (β and ε)	165	
<	At-211	7,2 h	1	79	>
	Bi-212	1 h	1(β)	727	
	Bi-213	45 m	1(2β)	440	
	Ra-223	11,4 d	4 (2β)	269	
	Ac-225	10 d	4(2β)	100	
	Th-226	31 m	4	111	
	Th-227	18,7 d	5(2β)	256	¥

L'Astate 211

Advantages of ²¹¹At:

- $T_{1/2}$: neither too short nor too long (7,2 h)
- One α-particle emitted per decay
- Production is made using accelerator (28 MeV)
 → easy scale-up by adding new facilities

 \mathbf{n}

Astate 211 production

Which nuclear reaction?		210At 8.1 H	211At 7.214 H	212At 0.314 S	213At 125 NS
²⁰⁹ Bi + α → ²¹¹ At + 2n	E _{threshold} > 20,718 MeV	ε: 00.82% α: 0.18%	ε: 58.20% α: 41.80%	α: 100.00% ε < 0.03%	в <mark>. 00.00%</mark>
²⁰⁹ Bi + α → ²¹⁰ At + 3n	Ethreshold> 28,613 MeV	209Po 124 Y	210Po 138.376 D	211Po 0.516 5	212Po 0.299 μS
		α: 99.55% ε: 0.45%	α: 100.00%	α: 0 0.00%	α: 100.00%
Which operate to choose?		208Bi 3.68E+5 Y	209Bi STABLE	210Bi 5.012 D	211Bi 2.14 M
83-BI-209(A, 2H)85-AT-211		ε: 100.00%	100%	β-: 100.00% α: 1.3E-4%	α: 99.72% β-: 0.28%
20 25 30 35 40 5 1959 Ranlbr 1.0 1985 Lambrecht 4 1985 Lambrecht 5 1986 Rattan 1 994 Singh 0.8 At211 6 At211 6 At211 7 0 0 0.6 0 0.4 0 0.2 0 0.0 0 0	At210 At210 a At210 a At210 im a bove E _{α} Balance t production	n is arou purities < 28,613 o be fou on and m	nd 30 M starts to 3 MeV nd to ma ninimize	eV be prod aximize contami	uced nants

Source:www.nndc.bnl.gouv

Bi target manufacturing

- 1) Vaporization: transition from the condensed phase (s/l) to the gas phase
- 2) Transit: transport of the gas phase
- 3) Condensation: construction of substrate layers

Lateral position (µm)

²¹¹At production @ Arronax

The IBA rabbit system (left) and a target for astatine production (right) to be used at ARRONAX.

Beam profile extracted from an irradiated EBT2 Gafchromic

Red color \rightarrow high irradiation Blue color \rightarrow area not irradiated

A beam energy degrader is required

Graphite

Ca

²¹¹At extraction using dry chemistry

²¹¹At: Production à ARRONAX

Astatine-211 production route:

 209 Bi + $\alpha \rightarrow ^{211}$ At + 2n

Production scheme @Arronax :

untreated group 100---e-- ²¹¹At-isotype control 555 kBq ^Dercent survival 80-→ ²¹¹At-9E7.4 370 kBq 60----- ²¹¹At-9E7.4 555 kBq Astatine-211-labeled anti-mCD138 in 40 ---- ²¹¹At-9E7.4 740 kBq mouse syngeneic multiple myeloma - ²¹¹At-9E7.4 1110 kBq Gouard S et al. Cancers (Basel). 2020 Sep 20-22;12(9):2721 0 20 40 60 80 100 120 140 160 0

days after engraftment

Basic and translational research

Chemical properties and quantum chemistry of astatine-211

Review: Guérard F et al. Acc Chem Res. 2021, 54, 16: 3264–3275

A new astatine-211 radiolabeling method based on boronic acids

Berdal M et al. Chem Sci. 2020 Nov 23;12(4):1458-1468

Arronax is producing 3-4 times a month At-211 (0.9-1.2GBq EOB)

²¹¹At production sites in the world

We are part of the COST NOAR network:

²¹¹At production facility in the world

- Running
- Potentially usable •

Pour participer à NOAR : https://astatine-net.eu/

1D

NV

CA

Example 3 : Studies on Tb 155 production

Contaminants are a limiting factor for production

Terbium-155 production from 155 Gd (d,x) – 93 % enrichment

Comparison between proton and deuteron

Particle	Proton	Deuteron
Target thickness (μm)	300	390
Energy (MeV)	10.4	15.1
TTY (MBq/μA/h)	3.4	10.2
Purity (%)	93	88

¹⁵⁶Tb always co-produced $T_{1/2}$ similar to ¹⁵⁵Tb

Contaminants are a limiting factor for production

We want to explore the possibility to couple chemical and physical separation methods (off-line).

Schematical view:

appropriate combination

target/projectile/energy

lead to few isobaric contaminants and high production

remove a large part of the matrix to limit its impact on the mass separation step and ease recycling

Mass separation step

Operation of the accelerator and the mass separation are decorrelated

First experiences on off-line mass separation

1. Part of the PhD work of R. Formento (PhD 2019) - Collaborations : AAA, Arronax, Mainz, ILL, CERN-MEDICIS

Studies conducted in larissa (Mainz) on **Resonant laser ionization for Terbium**

First experiences on off-line mass separation

 Production of ¹⁵⁵Tb as part of the MEDICIS program during Long shut down Collaborations : Arronax, CERN-MEDICIS Irradiation and Gd/Tb chemistry in Nantes Mass separation at CERN-MEDICIS

Boat sending to CERN-MEDICIS

Yield obtained 6.1% (decay corrected)

The SMILES project at Nantes

Séparation en Masse couplée à l'Ionisation Laser pour des applications Environnementales et en Santé

Laser ionization and mass separation for environmental and health applications

58

SMILES Status | Marc

The Smiles project at Nantes

Our main objectives are to:

- > Develop a mass separation device that includes resonant laser ionisation
- Be able to make analytical measurements on environmental sample (as for example from old uranium mines)
- Build expertise on these techniques and on simulation tools
- Prepare for off-line mass separator for radionuclide production

Stable element: Cu65/Cu63 Isotopic analysis : Pb , Am, Pu, Ra226/228 Ultra trace analysis: Pb210, Th230,U-236

Stable element: Cu65/Cu63

The Smiles project at Nantes

The constructed devices will be installed in subatech (limited authorization to manipulate radioactive material) We will explore different configurations:

PRISMA Physics of Radiation InteractionS with Matter and Applications

Conclusion

A multi-particle, high energy and high intensity machine is a very versatile tool for isotope production that allow:

use of p, d, alpha at different energies with different kinds of target (Tb 155 target with inside degrader)

Improve production capability and availability for clinical trials

Avaibility of particles and wide range of energy allow cross section studies to choose the best production routes

Technological improvement can be tested

Cu 64: A new accelerator will be installed in Arronax (IK18 project)
At211 : Internal target design is underway to use the right energy on target
Tb 155: development of mass separation tool

We explore other radionuclides

- ⁴⁴Ti to make available ⁴⁴Ti/⁴⁴Sc generator
- ⁹⁷Ru
- ²⁰³Pb interesting for imaging associated to ²¹²Pb

Conclusions

Pipeline Arronax

PRISMA Team

Permanent positions

Post- doctoral fellows

PhD students

63

Thank you for your attention

Arnaud.Guertin@subatech.in2p3.fr