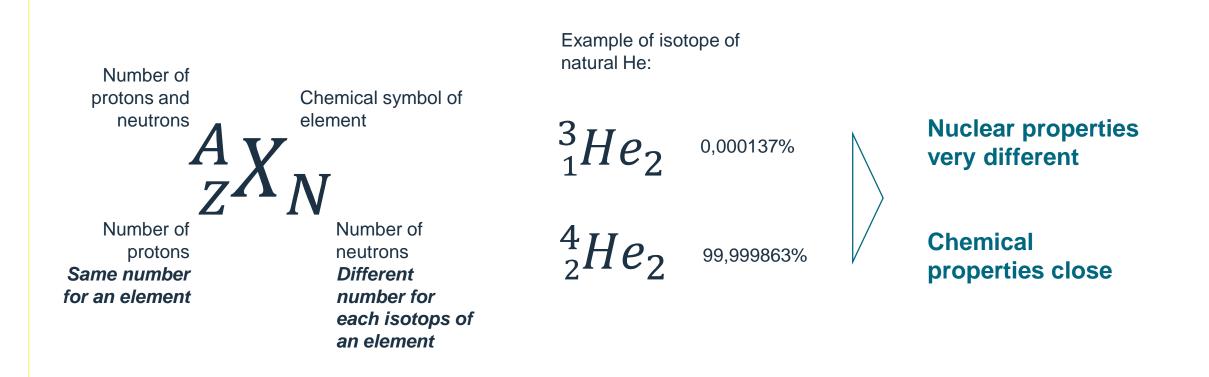
Stable Isotope Enrichment

Laurent Bigot Head of Stable Isotopes Division – Orano Chemistry Enrichment May 2025

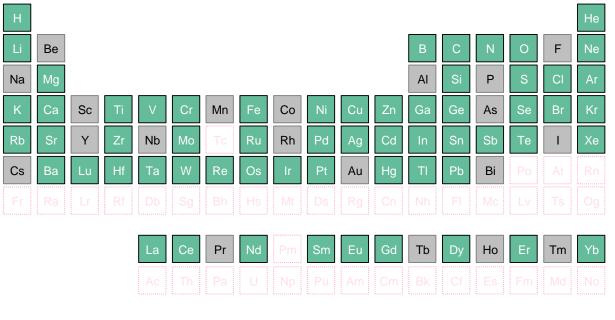
01 Introduction

02 Enrichment methods

03 Summary



• Introduction

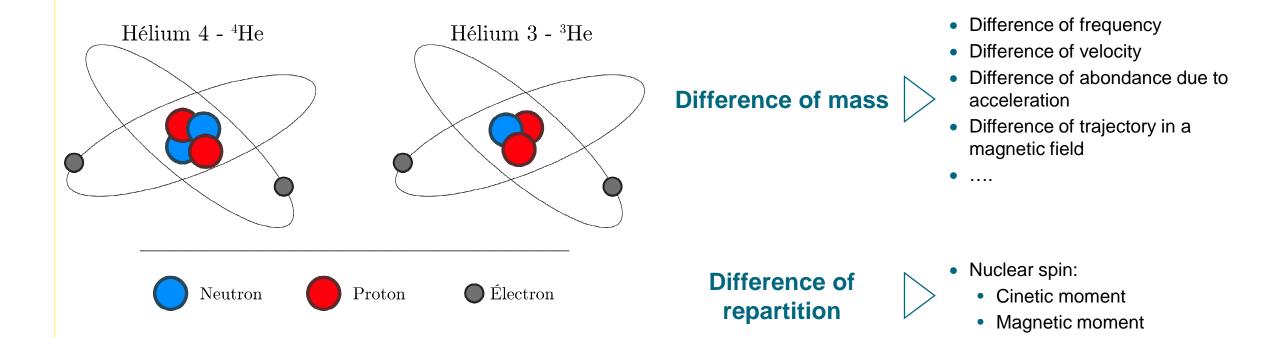

01 • Introduction: Isotopes

The isotopes of one element is an atom with the same number of protons but a different number of neutrons

01 • Introduction: Stable Isotopes

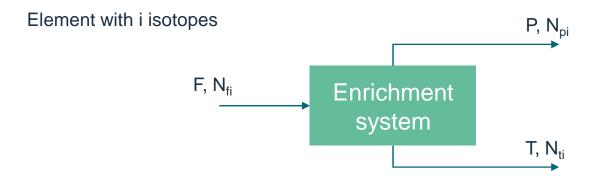
In this presentation, 'Stable Isotopes' means isotopes without spontaneously undergo radioactive decay or quasi-stable isotopes (e.g. isotopes with a very long decay like 136Xe with a half-life of 2.36×10²¹yr)

XX


61 stables elements (including quasi-stable elements) with several isotopes in the natural element

XX Other elements

01 Introduction: Difference between isotopes of an element


There are two main differences: the mass and the repartition

01 • Introduction: Enrichment

The enrichment is characterized by the enrichment and depletion coefficients and the cut

$$\begin{split} F &= P + T \\ F. N_{fi} &= P. N_{pi} + T. N_{ti} \\ \text{Molecular abondance } R_{xi0} &= \frac{N_{xi}}{N_{x0}} \ /O \in [1;i] \ /x \in \{f,p,t\} \\ \text{Enrichment coefficient } \alpha_{0i} &= \frac{R_{pi0}}{R_{fi0}} \ /O \in [1;i] \\ \text{Depletion coefficient } \beta_{0i} &= \frac{R_{ti0}}{R_{fi0}} \ /O \in [1;i] \\ \text{Cut } \theta &= \frac{P}{F} \end{split}$$

For an element with two isotopes:

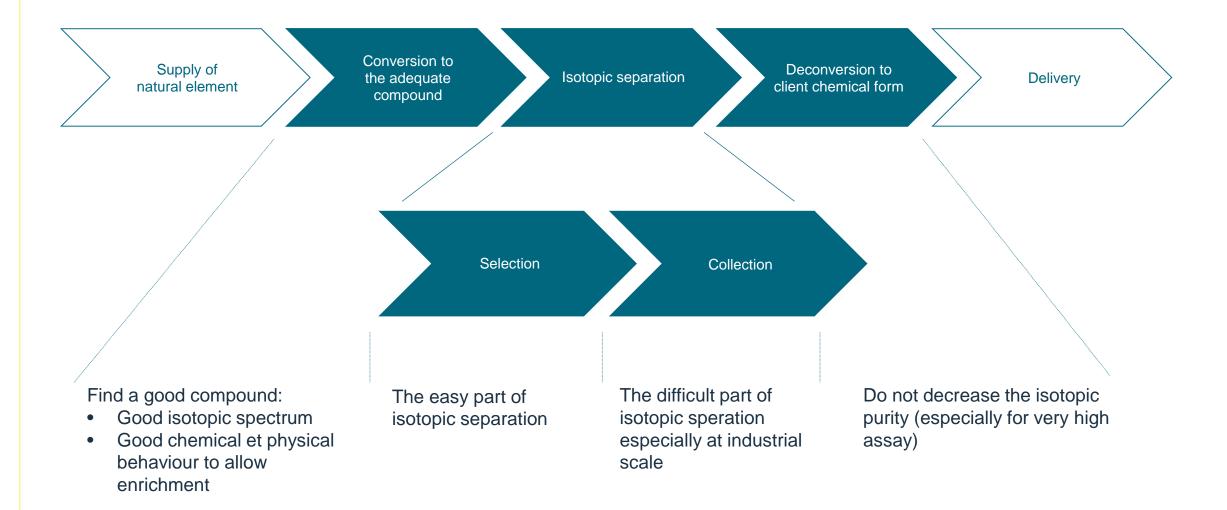
$$F = P + T$$

$$F. N_f = P. N_p + T. N_t$$

$$R_x = \frac{N_x}{1 - N_x} / x \in \{f, p, t\}$$

$$\alpha = \frac{R_p}{R_f}$$

$$\beta = \frac{R_t}{R_f}$$


$$\theta = \frac{P}{F}$$

$$\Delta U = P. V(N_p) + T. V(N_T) - F. V(N_F)$$

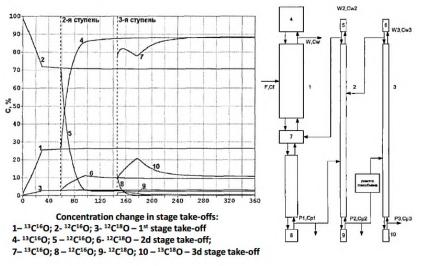
with $V(N_x) = (1 - 2. N_x). \ln(\frac{1 - N_x}{N_x})$

01 • Introduction: Enrichment means use of the difference to change the abondance of isotopes in an element

Difference of relative mass	Physical-chemical selection / Electrochemical process
Difference of trajectory in a magnetic field	Electromagnetic separation of ionized isotopes / Magnetic resonance method
Difference of frequency	Optical method of separation (transition frequency)
Difference of velocity	Gas diffusion method of separation
Difference of abondance due to acceleration	Centrifuge method of separation and other aerodynamic process

01 Introduction: 5 different phases of enrichment

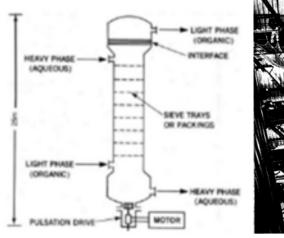
02 • Enrichment methods



Physical-chemical selection / Electrochemical process: Rectification

Rectification		
Process	Selection effect depend on the relative difference of molecular mass it's effective for light mass elements like C, Na and O,	
TRL	9 (working for light element)	
Alpha	α < 1,05	
Flow	High	
Hold-up	High	
Electrical consumption	Low	
Equilibrium time	Long (months)	

Cambridge Isotope Iaboratory


Example of the rectification column at Kurchatov institute

11

Physical-chemical selection / Electrochemical process: Other electrochemical processes – *slight difference between redox equilibrium constant*

COLEX		CHEMEX		Ion-exchange resin	
Process	Electrochemical exchange between LiOH and Hg amalgam	Process	UIII in HCL and UIV in solvant	Process	Solid-liquid ion-exchange process on ion-exchange resin (eg ASAHI process)
TRL	9 (working for Li)	TRL	7	TRL	9
Alpha	α ~ 1,005	Alpha	α < 1,005	Alpha	α << 1,005
Flow	High	Flow	High	Flow	High
Hold-up	High	Hold-up	High	Hold-up	High
Electrical consumption	Low	Electrical consumption	Low	Electrical consumption	Low
Equilibrium time	Long (months)	Equilibrium time	Long (months)	Equilibrium time	Long (months)

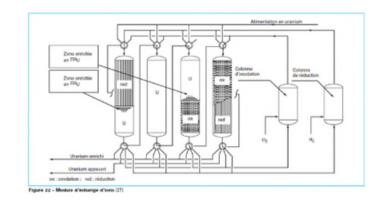
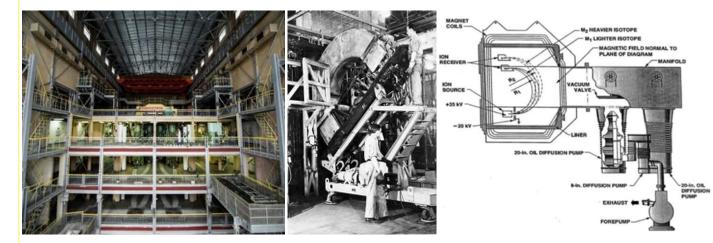
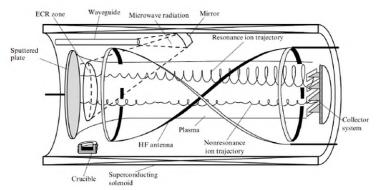



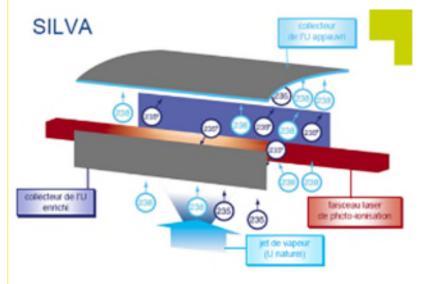
Figure 10. Chemical exchange process.

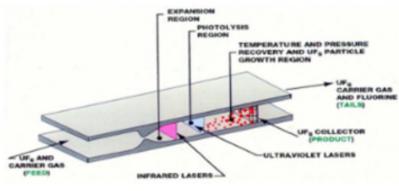

Magnetic processes

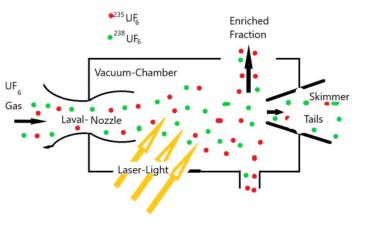
Calutron - EMIS		
Process	Ionization and deviation in a magnetic field	
TRL	9 (working for many stable isotopes)	
Alpha	α ~ 30	
Flow	Very low	
Hold-up	Very low	
Electrical consumption	Very high	
Equilibrium time	Very short	


 $\Delta d \propto \frac{\Delta M}{M}$

Ion Cyclotron resonance (ICR)		
Process	Ionization and deviation in an oscillating magnetic field	
TRL	9	
Alpha	α ~ 10	
Flow	Very low	
Hold-up	Very low	
Electrical consumption	Low	
Equilibrium time	Very short	







Optical method of separation (transition frequency) [1/2]

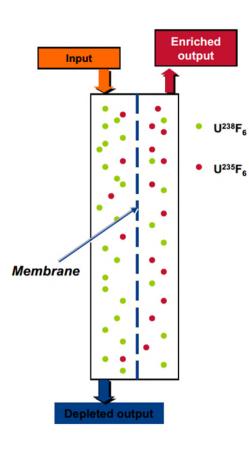
Atomic vapor laser isotope separation (AVLIS)		Molecular Laser Isotope Separation (MLIS)		Separation of Isotopes by Laser Excitation (SILEX)	
Process	Selective ionization and collection on electrically charged plates	Process	Selective dissociation of a gaseous compound	Process	Selective excitation to delay dimer formation or to dissociate dimer
TRL	7-8	TRL	?	TRL	6 ?
Alpha	α ~ 5	Alpha	α~5	Alpha	α ~ 10
Flow	High	Flow	High	Flow	High
Hold-up	Low	Hold-up	Low	Hold-up	Low
Electrical consumption	Low	Electrical consumption	Low	Electrical consumption	Low
Equilibrium time	Short (hours)	Equilibrium time	Short (hours)	Equilibrium time	Short (hours)



Optical method of separation (transition frequency) [2/2]

Condensation Repression Isotope Selective Laser Activation (CRISLA)		
Process	Selective excitation to delay dimer formation or to dissociate dimer	
TRL	?	
Alpha	α > 5	
Flow	High	
Hold-up	Low	
Electrical consumption	Low	
Equilibrium time	Short (hours)	

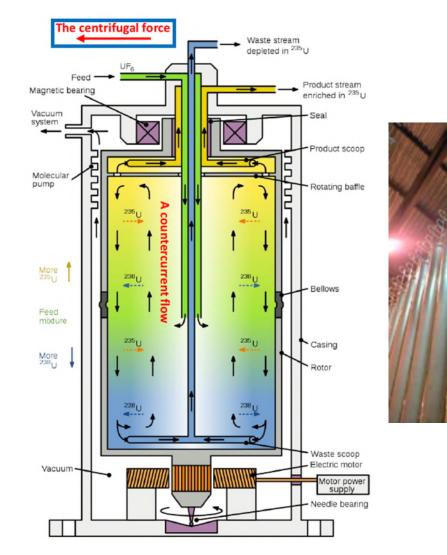
Step 1: Preparing the UF6

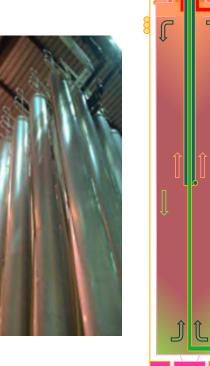

Step 2: Selective Excitation	Step 3: Product Harvesting
Isotopically Distinct Vibrational Energy Levels of UF_6	Dissociation Limit
V3 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4	Additybuton Schutzkon (R, UV) Dissociation of UVe, into UVe, set the set of UVe, into UVe, set Separation Accent Field Separation Accent of State and more

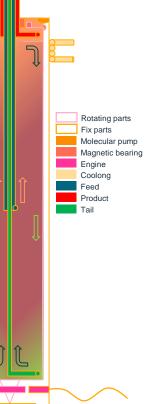
Gas diffusion method of separation

	Gas diffusion
Process	Difference of velocity
TRL	9 (no more working)
Alpha	α ~1,004
Flow	High
Hold-up	High
Electrical consumption	High
Equilibrium time	Long (months)

 $\alpha \propto \sqrt{M1/M2}$





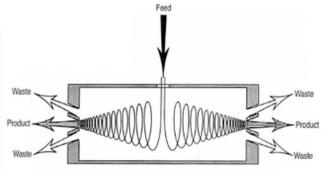

Centrifuge process

Centrifuge		
Process	Centrifugation	
TRL	9 (working for many stable isotopes)	
Alpha	α~1,3	
Flow	High	
Hold-up	Low	
Electrical consumption	Low	
Equilibrium time	Short (hours)	

 $\Delta U \propto \Delta M^2.\,\omega^4.\,L$

Other aerodynamic process

Becker's Vortex		
Process	High-velocity gas flow in a fix semi- circular hole	
TRL	8-9	
Alpha	α <1,05	
Flow	High	
Hold-up	Low to medium	
Electrical consumption	High	
Equilibrium time	Short (days)	


Nozzle plate Gas mixture UFs, He Nozzle Separation enriched with ²³⁰UF₆ Gas flow enriched with ²³⁰UF₆ Cas flow depleted of ²³⁵UF₆ Deflection wall

Vortex Tube	
Process	Fixed wall centrifugation
TRL	9
Alpha	α ~ 1,03
Flow	High
Hold-up	Low to medium
Electrical consumption	High
Equilibrium time	Short (days)

The **ASP separation device** separates gas species and isotopes in a volatile state.

18

orano

03 • Summary

The technology used for enrichment dépend of the element and the enrichment target

	TRL	Constrain	Alpha	Beta	Hold-up	Equilibriu m time	Flow	Energy consuptio n	Difficulty to collect
Rectification and isotope exchange	High	High deltaM/M	Very low <1,05	Very low	Very high	Months	Very high (up to tons/yrs)	Very low	Very easy
EMIS / ICR	High	No constrain	Very high	Low	Very low	Very short	Very low (up to tens of g/yrs)	Very high (EMIS) to very low (ICR)	Medium
SILVA/SILEX/C RISLA/MLIS	Medium to low	Way to select or to collect different for each element	High	High (SILVA) to low (SILEX)	Very low	Days	High (up to tens of kg/yrs)	Very low	Very difficult
Gazeous diffusion	High	Gazeous compound	Very low <1,05	Very low	Very high	~ Month	Very high (up to tons/yrs)	Very high	Very easy
Centrifuges / Vortex	High	Gazeous compound	Low	Low	Low	Short	High	Very low (centrifuge) to high (other technologies)	Medium to easy

Today, only three principal type of processes are used to enrich stable isotopes

Н																	Не
Li	Be											в	С	N	0	F	Ne
Na	Mg											AI	Si	Р	S	CI	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Element currently separated by centrifuges

Element currently separated by EMIS

Element currently separated by physical-chemical selection / electrochemical process Other elements

Other stable isotopes

Today, only three principal types of process are used to enrich stable isotopes

Light isotopes : CIL

Light isotopes : Taiyo Centrifuge : Top ECP Rosatom Bottom Urenco

Centrifuge : Orano EMIS : EKP Rosatom